
 Extensible HyperText Markup Language
◦ XHTML

◦ A markup language

◦ Separation of the presentation of a document from
the structure of the document’s information

◦ Based on HTML

 Technology of the World Wide Web Consortium (W3C)

 Original version designed in conjunction with first
browser

 HTML was defined with SGML

 Original intent of HTML: General layout of documents

that could be displayed by a wide variety of

computers

 Recent versions:

◦ HTML 4.0 – 1997

 Introduced many new features and deprecated many older features

◦ HTML 4.01 - 1999 - A cleanup of 4.0

◦ XHTML 1.0 - 2000

 Just 4.01 defined using XML, instead of SGML

◦ XHTML 1.1 – 2001

 Modularized 1.0, and drops frames

 We’ll stick to 1.1, except for frames

 Reasons to use XHTML, rather than HTML:

1. HTML has lax syntax rules, leading to sloppy and sometime ambiguous documents

– XHTML syntax is much more strict, leading to clean and clear documents in a standard

form

2. HTML processors do not even enforce the few syntax rules that do exist in HTML

3. The syntactic correctness of XHTML documents can be validated

 Basic Syntax

 Elements are defined by tags (markers)

◦ Tag format:

 Opening tag: <name>

 Closing tag: </name>

◦ The opening tag and its closing tag together specify a container for the content they

enclose

 Not all tags have content

◦ If a tag has no content, its form is <name />

 The container and its content together are called an element

 Many tags have attributes. An attribute more fully specifies

information about the content of the container.

 If a tag has attributes, they appear between its name and the right

bracket of the opening tag

 Comment form: <!-- … -->

 Browsers ignore comments, unrecognizable tags, line breaks,

multiple spaces, and tabs

 Tags are suggestions to the browser, even if they are recognized by

the browser

 XHTML documents
◦ Text editor (e.g. Notepad, Wordpad, emacs, etc.) or

◦ Use software like Expression Web or Dreamweaver

◦ .html or .htm file-name extension

◦ Web server

 Stores XHTML documents

◦ Web browser

 Requests XHTML documents

 Every XHTML document must begin with:

<?xml version = ″1.0″ encoding = "utf-8"?>

<!DOCTYPE html PUBLIC ″-//w3c//DTD XHTML 1.1//EN″

 http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd>

 <html>, <head>, <title>, and <body> are required in every document

 The whole document must have <html> as its root

 html must have the xmlns attribute:

 <html xmlns = ″http://www.w3.org/1999/xhtml″>

 A document consists of a head and a body

 The <title> tag is used to give the document a title, which is normally

displayed in the browser’s window title bar (at the top of the display)

 Prior to XHTML 1.1, a document could have either a body or a frameset

 xml declaration element

 SGML DOCTYPE command

 XHTML comments
◦ Start with <!-- and end with -->

 html element
◦ head element
 Head section

 Title of the document

 Style sheets and scripts

◦ body element
 Body section

 Page’s content the browser displays

 Start tag
 attributes (provide additional information about an element)

 name and value (separated by an equal sign)

 End tag

 Text is normally placed in paragraph elements

 Paragraph Elements
◦ The <p> tag breaks the current line and inserts a blank line - the new line gets the beginning of

the content of the paragraph

◦ The browser puts as many words of the paragraph’s content as will fit in each line
<?xml version = ″1.0″?>

<!DOCTYPE html PUBLIC ″-//w3c//DTD XHTML 1.1//EN″

 http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd>

<!-- greet.hmtl

 A trivial document

 -->

<html xmlns = ″http://www.w3.org/1999/xhtml″>

 <head> <title>Internet and WWW How to Program</title>

 </head>

 <body>

 <p>

 Welcome to XHTML

 </p>

 </body>

</html>

 Validation service (validator.w3.org)
◦ Checking a document’s syntax

 URL that specifies the location of the file

 Uploading a file to the site

validator.w3.org/file-upload.html

 Line breaks
◦ The effect of the
 tag is the same as that of <p>, except for the blank line

 No closing tag!

 Example of paragraphs and line breaks
On the plains of hesitation <p> bleach the

bones of countless millions </p>

who, at the dawn of victory
 sat down

to wait, and waiting, died.

 Typical display of this text:
On the plains of hesitation

bleach the bones of countless millions

who, at the dawn of victory

sat down to wait, and waiting, died.

 Headings
◦ Six sizes, 1 - 6, specified with <h1> to <h6>
◦ 1, 2, and 3 use font sizes that are larger than the default font size
◦ 4 uses the default size
◦ 5 and 6 use smaller font sizes

Outline

1 <?xml version = "1.0"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

3 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

4

5 <!-- Fig. 4.4: header.html -->

6 <!-- XHTML headers -->

7

8 <html xmlns = "http://www.w3.org/1999/xhtml">

9 <head>

10 <title>Internet and WWW How to Program - Headers</title>

11 </head>

12

13 <body>

14

15 <h1>Level 1 Header</h1>

16 <h2>Level 2 header</h2>

17 <h3>Level 3 header</h3>

18 <h4>Level 4 header</h4>

19 <h5>Level 5 header</h5>

20 <h6>Level 6 header</h6>

21

22 </body>

23 </html>

 Blockquotes
◦ Content of <blockquote>

◦ To set a block of text off from the normal flow and appearance of text

◦ Browsers often indent, and sometimes italicize

 Font Styles (can be nested)

◦ Usually boldface -

◦ Usually Italics -

 Example
The sleet in Crete

 lies completely

in the street

The sleet in Crete

lies completely in the street

 Superscripts and subscripts
◦ Subscripts with <sub>

◦ Superscripts with <sup>

Example: x₂³

Display: x2
3

 Inline versus block elements
◦ Block elements CANNOT be nested in inline elements

 All of this font size and font stuff can be done with style sheets, but these tags are not yet

deprecated

 Character Entities

Char. Entity Meaning

& & Ampersand

< < Less than

> > Greater than

” " Double quote

’ ' Single quote

¼ ¼ One quarter

½ ½ One half

¾ ¾ Three quarters

 ° Degree

(space) Non-breaking space

 Horizontal rules

◦ <hr /> draws a line across the display, after a line break

 The meta element (for search engines) Used to provide additional information about a

document, with attributes, not content

 GIF (Graphic Interchange Format)

◦ 8-bit color (256 different colors)

 JPEG (Joint Photographic Experts Group)

◦ 24-bit color (16 million different colors)

 Both use compression, but JPEG compression is better

 Images are inserted into a document with the tag with the src attribute

◦ The alt attribute is required by XHTML

 Purposes:

1. Non-graphical browsers

2. Browsers with images turned off

<img src = "comets.jpg"

 alt = "Picture of comets" />

 The tag has 30 different attributes, including width and height (in

pixels)

 Portable Network Graphics (PNG)

◦ Relatively new

◦ Should eventually replace both gif and jpeg

<!-- image.html

 An example to illustrate an image

 -->

<html xmlns = ″http://www.w3.org/1999/xhtml″>

 <head> <title> Images </title>

 </head>

 <body>

 <h1> Aidan's Airplanes </h1>

 <h2> The best in used airplanes </h2>

 <h3> "We've got them by the hangarful"

 </h3>

 <h2> Special of the month </h2>

 <p>

 1960 Cessna 210

 577 hours since major engine overhaul

 1022 hours since prop overhaul

 <img src = "c210new.jpg"

 alt = "Picture of a Cessna 210"/>

 Buy this fine airplane today at a

 remarkably low price

 Call 999-555-1111 today!

 </p>

 </body>

</html>

• Hypertext is the essence of the Web!

• A link is specified with the href (hypertext reference)

attribute of <a> (the anchor tag)

• The content of <a> is the visual link in the document

 Both text and images can be the content of
hyperlinks

• The target is the document specified in the link

• Note: Relative addressing of targets is easier to

maintain and more portable than absolute addressing

• If the target is another document in the same directory, the target is

just the document’s filename

• If the target is a document in some other directory, the Unix

pathname conventions are used.

<!-- link.html

 An example to illustrate a link

 -->

<html xmlns = ″http://www.w3.org/1999/xhtml″>

 <head> <title> Links </title>

 </head>

 <body>

 <h1> Aidan's Airplanes </h1>

 <h2> The best in used airplanes </h2>

 <h3> "We've got them by the hangarful"

 </h3>

 <h2> Special of the month </h2>

 <p>

 1960 Cessna 210

 Information on the Cessna 210

 </p>

 </body>

</html>

Outline 1 <?xml version = "1.0"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

3 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

4

5 <!-- Fig. 4.6: contact.html -->

6 <!-- Adding email hyperlinks -->

7

8 <html xmlns = "http://www.w3.org/1999/xhtml">

9 <head>

10 <title>Internet and WWW How to Program - Contact Page</title>

11 </head>

12

13 <body>

14

15 <p>

16 My email address is

17

18 deitel@deitel.com

19

20 . Click the address and your browser will

21 open an e-mail message and address it to me.

22 </p>

23 </body>

24 </html>

Outline 1 <?xml version = "1.0"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

3 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

4

5 <!-- Fig. 4.8: nav.html -->

6 <!-- Using images as link anchors -->

7

8 <html xmlns = "http://www.w3.org/1999/xhtml">

9 <head>

10 <title>Internet and WWW How to Program - Navigation Bar

11 </title>

12 </head>

13

14 <body>

15

16 <p>

17

18 <img src = "buttons/links.jpg" width = "65"

19 height = "50" alt = "Links Page" />

20

21

22

23 <img src = "buttons/list.jpg" width = "65"

24 height = "50" alt = "List Example Page" />

25

Outline
26

27

28 <img src = "buttons/contact.jpg" width = "65"

29 height = "50" alt = "Contact Page" />

30

31

32

33 <img src = "buttons/header.jpg" width = "65"

34 height = "50" alt = "Header Page" />

35

36

37

38 <img src = "buttons/table.jpg" width = "65"

39 height = "50" alt = "Table Page" />

40

41

42

43 <img src = "buttons/form.jpg" width = "65"

44 height = "50" alt = "Feedback Form" />

45

46 </p>

47

48 </body>

49 </html>

• If the target is not at the beginning of the document, the target spot must

be marked

• Target labels can be defined in many different tags with the id attribute,

as in

<h1 id = "baskets"> Baskets </h1>

• The link to an id must be preceded by a pound sign (#); If the id is in

the same document, this target could be

 What about baskets?

• If the target is in a different document, the document reference must be

included

 Baskets

• Style note: a link should blend in with the surrounding text, so reading it

without taking the link should not be made less pleasant

• Unordered lists
• The list is the content of the tag
• List elements are the content of the tag

<h3> Some Common Single-Engine Aircraft </h3>

 Cessna Skyhawk

 Beechcraft Bonanza

 Piper Cherokee

• Ordered lists
• The list is the content of the tag

• Each item in the display is preceded by a sequence value

<h3> Cessna 210 Engine Starting Instructions

</h3>

 Set mixture to rich

 Set propeller to high RPM

 Set ignition switch to "BOTH"

 Set auxiliary fuel pump switch to

 "LOW PRIME"

 When fuel pressure reaches 2 to 2.5

 PSI, push starter button

 Definition lists (for glossaries, etc.)

◦ List is the content of the <dl> tag

◦ Terms being defined are the content of the <dt> tag

◦ The definitions themselves are the content of the <dd> tag

<h3> Single-Engine Cessna Airplanes </h3>

<dl >

 <dt> 152 </dt>

 <dd> Two-place trainer </dd>

 <dt> 172 </dt>

 <dd> Smaller four-place airplane </dd>

 <dt> 182 </dt>

 <dd> Larger four-place airplane </dd>

 <dt> 210 </dt>

 <dd> Six-place airplane - high performance

 </dd>

</dl>

Outline

1 <?xml version = "1.0"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

3 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

4

5 <!-- Fig. 4.11: list.html -->

6 <!-- Advanced Lists: nested and ordered -->

7

8 <html xmlns = "http://www.w3.org/1999/xhtml">

9 <head>

10 <title>Internet and WWW How to Program - Lists</title>

11 </head>

12

13 <body>

14

15 <h1>The Best Features of the Internet</h1>

16

17 <!-- create an unordered list -->

18

19 You can meet new people from countries around

20 the world.

21

22 You have access to new media as it becomes public:

23

•Nested lists
•Any type list can be nested inside any type list

•The nested list must be in a list item

Outline 24 <!-- this starts a nested list, which uses a -->

25 <!-- modified bullet. The list ends when you -->

26 <!-- close the tag. -->

27

28 New games

29

30 New applications

31

32 <!-- nested ordered list -->

33

34 For business

35 For pleasure

36

37

38

39 Around the clock news

40 Search engines

41 Shopping

42

43 Programming

44

45 <!-- another nested ordered list -->

46

47 XML

48 Java

Outline 49 XHTML

50 Scripts

51 New languages

52

53

54

55

56 <!-- ends the nested list of line 27 -->

57

58

59 Links

60 Keeping in touch with old friends

61 It is the technology of the future!

62

63 <!-- ends the unordered list of line 18 -->

64

65 </body>

66 </html>

• A table is a matrix of cells, each possibly having content

• The cells can include almost any element

• Some cells have row or column labels and some have data

• A table is specified as the content of a <table> tag

• A border attribute in the <table> tag specifies a border

between the cells

• If border is set to "border", the browser’s default width border

is used

• The border attribute can be set to a number, which will be the

border width

• Without the border attribute, the table will have no lines!

• Tables are given titles with the <caption> tag, which can

immediately follow <table>

 Each row of a table is specified as the content of a <tr> tag

 The row headings are specified as the content of a <th> tag

 The contents of a data cell is specified as the content of a <td> tag

<table border = "border">

 <caption> Fruit Juice Drinks </caption>

 <tr>

 <th> </th>

 <th> Apple </th>

 <th> Orange </th>

 <th> Screwdriver </th>

 </tr>

 <tr>

 <th> Breakfast </th>

 <td> 0 </td>

 <td> 1 </td>

 <td> 0 </td>

 </tr>

 <tr>

 <th> Lunch </th>

 <td> 1 </td>

 <td> 0 </td>

 <td> 0 </td>

 </tr>

 </table>

 A table can have two levels of column labels

◦ If so, the colspan attribute must be set in the <th> tag to

specify that the label must span some number of columns

<tr>

 <th colspan = "3"> Fruit Juice Drinks </th>

</tr>

<tr>

 <th> Orange </th>

 <th> Apple </th>

 <th> Screwdriver </th>

</tr>

• If the rows have labels and there is a spanning column label, the
upper left corner must be made larger, using rowspan

<table border = "border">

 <tr>

 <td rowspan = "2"> </td>

 <th colspan = "3"> Fruit Juice Drinks

 </th>

 </tr>

 <tr>

 <th> Apple </th>

 <th> Orange </th>

 <th> Screwdriver </th>

 </tr>

 …
</table>

 The align attribute controls the horizontal placement of the

contents in a table cell

◦ Values are left, right, and center (default)

◦ align is an attribute of <tr>, <th>, and <td> elements

 The valign attribute controls the vertical placement of the contents

of a table cell

◦ Values are top, bottom, and center (default)

◦ valign is an attribute of <th> and <td> elements

 SHOW cell_align.html and display it

• The cellspacing attribute of <table> is used to specify the

distance between cells in a table

 The cellpadding attribute of <table> is used to specify the

spacing between the content of a cell and the inner walls of the cell

<table cellspacing = "50">
 <tr>
 <td> Colorado is a state of …
 </td>
 <td> South Dakota is somewhat…
 </td>
 </tr>
 </table>

- Table Sections
- Header, body, and footer, which are the elements: thead, tbody, and tfoot

 A form is the usual way information is gotten from a browser to a

server

 HTML has tags to create a collection of objects that implement this

information gathering

◦ The objects are called widgets (e.g., radio buttons and checkboxes)

 When the Submit button of a form is clicked, the form’s values are

sent to the server

 All of the widgets, or components of a form are defined in the

content of a <form> tag

◦ The only required attribute of <form> is action, which specifies the URL of the

application that is to be called when the Submit button is clicked

action = "http://www.cs.ucp.edu/cgi-bin/survey.pl"

 If the form has no action, the value of action is the empty string

 The method attribute of <form> specifies one of the two

possible techniques of transferring the form data to the

server, get and post

◦ get and post are discussed in Chapter 10

 Widgets

◦ Many are created with the <input> tag

 The type attribute of <input> specifies the kind of widget being

created

1. text

 Creates a horizontal box for text input

 Default size is 20; it can be changed with the size attribute

 If more characters are entered than will fit, the box is scrolled

(shifted) left

◦ If you don’t want to allow the user to type more characters than

will fit, set maxlength, which causes excess input to be ignored

<input type = "text" name = "Phone"

 size = "12" />

2. Checkboxes - to collect multiple choice input

◦ Every checkbox requires a value attribute, which is the widget’s

value in the form data when the checkbox is ‘checked’

 A checkbox that is not ‘checked’ contributes no value to the form

data

◦ By default, no checkbox is initially ‘checked’

◦ To initialize a checkbox to ‘checked’, the checked attribute must

be set to "checked"

 Widgets (continued)
Grocery Checklist

<form action = "">

 <p>

 <label><input type = "checkbox" name ="groceries"

 value = "milk" checked = "checked“ /> Milk

 </label>

 <label><input type = "checkbox" name ="groceries"

 value = "bread“ />Bread

 </label>

 <label><input type = "checkbox" name = "groceries"

 value= "eggs“ /> Eggs

 </label

 </p>

</form>

3. Radio Buttons - collections of checkboxes in which only one button
can be ‘checked’ at a time

 Every button in a radio button group MUST have the same name

 Widgets (continued)

3. Radio Buttons (continued)
◦ If no button in a radio button group is ‘pressed’, the browser often ‘presses’ the first one

Age Category

<form action = "">

 <p>

 <label><input type = "radio" name = "age"

 value = "under20" checked = "checked“ /> 0-19 </label>

 <label><input type = "radio" name = "age"

 value = "20-35“ /> 20-35</label>

 <label><input type = "radio" name = "age"

 value = "36-50“ /> 36-50 </label>

 <label><input type = "radio" name = "age"

 value = "over50 /"> Over 50 </label>

 </p>

</form>

3. Menus - created with <select> tags
 There are two kinds of menus, those that behave like checkboxes and

those that behave like radio buttons (the default)

◦ Menus that behave like checkboxes are specified by including the multiple
attribute, which must be set to "multiple"

 The name attribute of <select> is required

 The size attribute of <select> can be included to specify the number

of menu items to be displayed (the default is 1)

◦ If size is set to > 1 or if multiple is specified, the menu is displayed as a pop-up

menu

3. Menus (continued)

◦ Each item of a menu is specified with an <option> tag, whose

pure text content (no tags) is the value of the item

◦ An <option> tag can include the selected attribute, which when

assigned "selected” specifies that the item is preselected
Grocery Menu - milk, bread, eggs, cheese

<form action = "">

 <p>

 <label>With size = 1 (the default)

 <select name = "groceries">

 <option> milk </option>

 <option> bread </option>

 <option> eggs </option>

 <option> cheese </option>

 </select>

 </label>

 </p>

</form>

5. Text areas - created with <textarea>

◦ Usually include the rows and cols attributes to specify

the size of the text area

◦ Default text can be included as the content of <textarea>

◦ Scrolling is implicit if the area is overfilled
Please provide your employment aspirations

<form action = "">

 <p>

 <textarea name = "aspirations" rows = "3”

 cols = "40">

 (Be brief and concise)

 </textarea>

 </p>

</form>

6. Reset and Submit buttons

◦ Both are created with <input>

<input type = "reset" value = "Reset Form“ />

<input type = "submit” value = "Submit Form“ />

 Submit has two actions:

1. Encode the data of the form

2. Request that the server execute the server-resident

program specified as the value of the action attribute

of <form>

◦ A Submit button is required in every form

--> SHOW popcorn.html and display it

 A replacement for HTML
(but HTML can be generated from XML)

 A presentation format
(but XML can be converted into one)

 A programming language
(but it can be used with almost any language)

 A network transfer protocol
(but XML may be transferred over a network)

 A database
(but XML may be stored into a database)

April 29th, 2003

Organizing and Searching Information with

XML 50

XML is a meta markup
language for text documents

/ textual data

April 29th, 2003

Organizing and Searching Information with

XML 51

XML allows to define

languages („applications“) to

represent text documents /

textual data

<article>

 <author>Gerhard Weikum</author>

 <title>The Web in 10 Years</title>

</article>

April 29th, 2003

Organizing and Searching Information with

XML 52

• Easy to understand for human users

• Very expressive (semantics along with the data)

• Well structured, easy to read and write from

programs

This looks nice, but…

<t108>

 <x87>Gerhard Weikum</x87>

 <g10>The Web in 10 Years</g10>

</t108>

April 29th, 2003

Organizing and Searching Information with

XML 53

• Hard to understand for human users

• Not expressive (no semantics along with the

data)

• Well structured, easy to read and write from

programs

… this is XML, too:

<data>

 ch37fhgks73j5mv9d63h5mgfkds8d984lgnsmcns983

</data>

April 29th, 2003

Organizing and Searching Information with

XML 54

• Impossible to understand for human users

• Not expressive (no semantics along with the

data)

• Unstructured, read and write only with special

programs

… and what about this XML document:

The actual benefit of using XML highly depends on the design of the application.

 Truly Portable Data

 Easily readable by human users

 Very expressive (semantics near data)

 Very flexible and customizable (no finite tag
set)

 Easy to use from programs (libs available)

 Easy to convert into other representations
(XML transformation languages)

 Many additional standards and tools

 Widely used and supported

April 29th, 2003

Organizing and Searching Information with

XML 55

April 29th, 2003

Organizing and Searching Information with

XML 56

Database with

XML

documents

Clients

Converters XML2HTML XML2WML XML2PDF

http://images.google.de/imgres?imgurl=www.hs-niederrhein.de/service/wap/handy.jpg&imgrefurl=http://www.hs-niederrhein.de/service/wap/&h=502&w=305&prev=/images%3Fq%3Dhandy%26svnum%3D10%26hl%3Dde%26lr%3D%26ie%3DUTF-8
http://images.google.de/imgres?imgurl=media.michigandaily.com/vimages/pda/pda.jpg&imgrefurl=http://www.michigandaily.com/vnews/display.v%3Fpage%3Dpdasubscribe&h=192&w=151&prev=/images%3Fq%3Dpda%26svnum%3D10%26hl%3Dde%26lr%3D%26ie%3DUTF-8

April 29th, 2003

Organizing and Searching Information with

XML 57

Legacy

System

(e.g.,

SAP

R/2)

Legacy

System

(e.g.,

Cobol)

XML

Adapter
XML

Adapter

XML

(BMECat, ebXML, RosettaNet, BizTalk,

…)

Suppli

er

Buyer

Order

<rdf:RDF

 <rdf:Description rdf:about="http://www-dbs/Sch03.pdf">

 <dc:title>A Framework for…</dc:title>

 <dc:creator>Ralf Schenkel</dc:creator>

 <dc:description>While there are...</dc:description>

 <dc:publisher>Saarland University</dc:publisher>

 <dc:subject>XML Indexing</dc:subject>

 <dc:rights>Copyright ...</dc:rights>

 <dc:type>Electronic Document</dc:type>

 <dc:format>text/pdf</dc:format>

 <dc:language>en</dc:language>

 </rdf:Description>

</rdf:RDF>

April 29th, 2003

Organizing and Searching Information with

XML 58

<article>

 <section id=„1“ title=„Intro“>

 This article is about <index>XML</index>.

 </section>

 <section id=„2“ title=„Main Results“>

 <name>Weikum</name> <cite idref=„Weik01“/> shows the

following theorem (see Section <ref idref=„1“/>)

 <theorem id=„theo:1“ source=„Weik01“>

 For any XML document x, ...

 </theorem>

 </section>

 <literature>

 <cite id=„Weik01“><author>Weikum</author></cite>

 </literature>

</article>

April 29th, 2003

Organizing and Searching Information with

XML 60

<article>

 <author>Gerhard Weikum</author>

 <title>The Web in Ten Years</title>

 <text>

 <abstract>In order to evolve...</abstract>

 <section number=“1” title=“Introduction”>

 The <index>Web</index> provides the universal...

 </section>

 </text>

</article>

April 29th, 2003

Organizing and Searching Information with

XML 61

<article>

 <author>Gerhard Weikum</author>

 <title>The Web in Ten Years</title>

 <text>

 <abstract>In order to evolve...</abstract>

 <section number=“1” title=“Introduction”>

 The <index>Web</index> provides the universal...

 </section>

 </text>

</article>

April 29th, 2003

Organizing and Searching Information with

XML 62

Freely definable

tags

<article>

 <author>Gerhard Weikum</author>

 <title>The Web in Ten Years</title>

 <text>

 <abstract>In order to evolve...</abstract>

 <section number=“1” title=“Introduction”>

 The <index>Web</index> provides the universal...

 </section>

 </text>

</article>

April 29th, 2003

Organizing and Searching Information with

XML 63

Elemen

t

Content of

the Element

(Subelement

s and/or

Text)

End Tag

Start

Tag

<article>

 <author>Gerhard Weikum</author>

 <title>The Web in Ten Years</title>

 <text>

 <abstract>In order to evolve...</abstract>

 <section number=“1” title=“Introduction”>

 The <index>Web</index> provides the universal...

 </section>

 </text>

</article>

April 29th, 2003

Organizing and Searching Information with

XML 64

Attributes

with name

and value

 (Freely definable) tags: article, title, author
◦ with start tag: <article> etc.

◦ and end tag: </article> etc.

 Elements: <article> ... </article>

 Elements have a name (article) and a content (...)

 Elements may be nested.

 Elements may be empty: <this_is_empty/>

 Element content is typically parsed character data
(PCDATA), i.e., strings with special characters,
and/or nested elements (mixed content if both).

 Each XML document has exactly one root element
and forms a tree.

 Elements with a common parent are ordered.

April 29th, 2003

Organizing and Searching Information with

XML 65

Elements may have attributes (in the start tag) that have a name
and

a value, e.g. <section number=“1“>.

What is the difference between elements and attributes?

 Only one attribute with a given name per element (but an
arbitrary number of subelements)

 Attributes have no structure, simply strings (while elements
can have subelements)

As a rule of thumb:

 Content into elements

 Metadata into attributes

Example:

<person born=“1912-06-23“ died=“1954-06-07“>

Alan Turing</person> proved that…

April 29th, 2003

Organizing and Searching Information with

XML 66

April 29th, 2003

Organizing and Searching Information with

XML 67

article

author title text

section abstract

The index

We

b

provides

…

title=“…“

number=“1“

In order

…

Gerhar

d

Weiku

m
The Web

in 10

years

 Some special characters must be escaped
using entities:
< → <

& → &
(will be converted back when reading the XML
doc)

 Some other characters may be escaped, too:
> → >

“ → "

‘ → '

April 29th, 2003

Organizing and Searching Information with

XML 68

 Default namespace may be set for an element
and its content (but not its attributes):
<book xmlns=“http://www-dbs/dbs“>

 <description>...</description>

<book>

 Can be overridden in the elements by
specifying the namespace there (using prefix
or default namespace)

April 29th, 2003

Organizing and Searching Information with

XML 69

Outline

3.1 Document Type Definitions

3.2 XML Schema (very short)

20
03

Organizing and Searching Information with

XML 70

April 29th, 2003

Organizing and Searching Information with

XML 71

XQuery is an extremely powerful query language for XML data.
A query has the form of a so-called FLWR expression:

FOR $var1 IN expr1, $var2 IN expr2, ...

LET $var3 := expr3, $var4 := expr4, ...

WHERE condition

RETURN result-doc-construction

The FOR clause evaluates expressions (which may be XPath-style
path expressions) and binds the resulting elements to variables.
For a given binding each variable denotes exactly one element.

The LET clause binds entire sequences of elements to variables.

The WHERE clause evaluates a logical condition with each of
the possible variable bindings and selects those bindings that
satisfy the condition.

The RETURN clause constructs, from each of the variable bindings,
an XML result tree. This may involve grouping and aggregation
and even complete subqueries.

April 29th, 2003

Organizing and Searching Information with

XML 72

// find Web-related articles by Dan Suciu from the year 1998

<results> {

FOR $a IN document(“literature.xml“)//article

 FOR $n IN $a//author, $t IN $a/title

 WHERE $a/@year = “1998“

 AND contains($n, “Suciu“) AND contains($t, “Web“)

 RETURN <result> $n $t </result> } </results>

// find articles co-authored by authors who have jointly written a book

after 1995

<results> {

FOR $a IN document(“literature.xml“)//article

 FOR $a1 IN $a//author, $a2 IN $a//author

 WHERE SOME $b IN document(“literature.xml“)//book SATISFIES

 $b//author = $a1 AND $b//author = $a2 AND $b/@year>“1995“

 RETURN <result> $a1 $a2 <wrote> $a </wrote> </result> }

</results>

